LA EXTRACCIÓN ABIERTA DE INFORMACIÓN PARA EL ESPAÑOL

ALISA ZHILA
ALEXANDER GELBUKH

CENTRO DE INVESTIGACIÓN EN COMPUTACIÓN, INSTITUTO POLITÉCNICO NACIONAL

6º Coloquio de Lingüística Computacional en la UNAM
Agosto 2013
OUTLINE

Introduction
 • Open Information Extraction (Open IE)
 • Applications of Open IE
 • Approaches to Open IE
 • Problem

Open IE for Spanish

Experiments & Results

Error Analysis

Conclusions and Future Work
TRADITIONAL IE

• Find all, say, acquisitions: quien compró que
• Target relations are predefined:
 • Relations: acquisition(arg1, arg2, ..., argN)
 • args: personas, empresas, moneda...
• Hand-labeled lexicalized training examples
• Lots of training data
• Tuned linguistic technologies (NER, parsing, ...)
• Extensive human involvement

Used in: Domain-specific information extraction from relatively small homogeneous corpora
WHAT IS OPEN IE? 1/2

Introduced by Banko et al. in 2007

Arbitrary relations, not predefined:

\textit{Born in, comes from, makes a deal with, ...}

Extracted tuples are called “assertions”:

\langle \text{Argument1, Relation, Argument2} \rangle

\textit{McCain fought hard against Obama, but finally lost the election}

- \langle \text{McCain, fought against, Obama} \rangle
- \langle \text{McCain, lost, the election} \rangle
WHAT IS OPEN IE? 2/2

Unlexicalized, domain-independent:
 looks only at POS/syntactic structure

No need in extensive hand-labeled training dataset:
 uses heuristics or distant supervision

Fast and scalable to the Web:
 appropriate for a large heterogeneous corpus

Can serve even undefined user needs:
 users can interactively refine their need
APPLICATIONS OF OPEN IE

Different from traditional IE!

• Common-sense knowledge collection
• New perspectives in QA systems
• New approach to IR [Etzioni, 2011]
• Machine Reading: automatic, unsupervised understanding of text [Etzioni et al., 2006]
• Web text quality automatic assessment [Horn & Zhila et al., 2013 @ NoDaLiDa]
APPROACHES TO OPEN IE

1. **ML-based**
 \[\text{TextRunner (Banko, 2007), WOE^{pos} & WOE^{parse} (Wu & Weld, 2010)}\]

 Shortcomings: Extracts incoherent relations

 “The Mark 14 was central to the torpedo scandal of the fleet.”

2. **Syntactic and context analysis**
 \[\text{OLLIE (Mausam, 2012), FES (Aguilar, 2012)}\]

 Shortcomings: slow, computational resource demanding

3. **POS analysis and syntactic constraints**
 \[\text{ReVerb (Fader et al., 2011)}\]

 Shortcomings: only verb–based relations

 Advantages: fast, easy to implement, accurate, efficient
PROBLEM

- Requires language-specific information
e.g. Typical POS sequence in a relation
- **Was implemented for English only**
 “simple canonical ways in which verbs express relationships in English” [Etzoni et al., 2011]

3. POS analysis and syntactic constraints

What are peculiarities of application of this method to another language?
WHY IS IT IMPORTANT?

• Different morphology (different POS-tagging)
• Different grammar (i.e. word order)
• In general:
 • Languages are different
 • No work on languages other than English
 • We cannot expect the same behavior
OUTLINE

Introduction

Open IE for Spanish
 • Architecture of ExtrHech system

Experiments & Results

Error Analysis

Conclusions
ARCHITECTURE OF EXTRHECH OPEN IE SYSTEM FOR SPANISH 1/2

EAGLES POS-tag set for Spanish from Freeling-2.2

Syntactic constraints as regular expressions
1. “Relation phrase”-first approach: looks for verb phrase
 \[VREL \rightarrow (V W^*P) | (V) \]
2. Looks for noun phrases to the left and right
 \[NP \rightarrow N \ (PREP \ N)? \]
3. Rules for
 - Coordinating conjunctions
 - Relative clauses
 - Participles

Input
POS-tagged text

ExtrHech
-Syntactic constraints

Output
List of assertions
<Arg1; Rel; Arg2>
ARCHITECTURE OF EXTRHECH OPEN IE SYSTEM FOR SPANISH 2/2: LIMITATIONS

- Does not resolve zero subject (anaphora issues)

 “Cerró la entrada.”

 (“[He] closed the entrance.”)
OUTLINE

Introduction

Open IE for Spanish

Experiments & Results
 • For different Spanish datasets
 • For parallel English-Spanish dataset
 • Performance comparison

Error Analysis

Conclusions
EXPERIMENT OVER TWO SPANISH DATASETS 1/2

FACT-SPA-CIC
- 68 sentences in Spanish
- Manually selected from school textbooks
- Grammatically and orthographically correct

RAW WEB TEXT
- 159 sentences
- randomly extracted from Web (with language detection filter)
- 36 sentences (22%) either grammatically incorrect or incoherent

“cronista cumple del diego video diego el 10”

(“journalist accomplishes of the [D]iego video [D]iego 10 [points]”)

PERFORMANCE FOR SPANISH DATASETS 2/2

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>FactSpaCIC</td>
<td>87%</td>
<td>70%</td>
</tr>
<tr>
<td>(grammatically correct)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw Web text</td>
<td>55%</td>
<td>49%</td>
</tr>
<tr>
<td>(noisy)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Precision = \(\frac{\text{correct assertions}}{\text{all extracted assertions}} \)

Recall = \(\frac{\text{correct assertions}}{\text{all possible assertions}} \)

- **correct assertions** as evaluated by two human annotators
- **all possible (correct) assertions** = all expected extractions + assertions returned by the system that both annotators considered correct
EXPERIMENT OVER PARALLEL ENGLISH-SPANISH DATASET

Gramatically correct dataset FactSpaCIC of 68 sentences was translated into English

<table>
<thead>
<tr>
<th>System</th>
<th>Precision</th>
<th>Recall</th>
<th>correct extractions</th>
<th>found extractions</th>
<th>expected extractions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ExtrHech (Spanish)</td>
<td>87%</td>
<td>70%</td>
<td>99.5</td>
<td>115</td>
<td>137</td>
</tr>
<tr>
<td>ReVerb (English)</td>
<td>76%</td>
<td>50%</td>
<td>71</td>
<td>93</td>
<td>139</td>
</tr>
</tbody>
</table>

- ReVerb turned out to be less robust: More unattempted sentences
COMPARISON OF PERFORMANCE FOR VARIOUS OPEN IE SYSTEMS

<table>
<thead>
<tr>
<th>System</th>
<th>Approach</th>
<th>Dataset (# of sent.)</th>
<th>Precision</th>
<th>Recall</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>ExtrHech (Spanish)</td>
<td>syntactic constr. over POS-tagged text</td>
<td>FactSpaCIC (68)</td>
<td>0.87</td>
<td>0.73</td>
<td>< 5 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>raw Web text (159)</td>
<td>0.55</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>ReVerb (English)</td>
<td>syntactic constr. over POS-tagged text</td>
<td>FactSpaCIC (68), translated</td>
<td>0.76</td>
<td>0.50</td>
<td>< 5 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yahoo (500)</td>
<td>0.87</td>
<td>at 0.20</td>
<td>at 0.50</td>
</tr>
<tr>
<td>TextRunner (English)</td>
<td>self-learning on POS-tagged text</td>
<td>Yahoo (500)</td>
<td>< 0.64</td>
<td>at >0</td>
<td>< 5 min</td>
</tr>
<tr>
<td>WOEparse (English)</td>
<td>self-learning on parsed text</td>
<td>Yahoo (500)</td>
<td>0.87</td>
<td>at 0.15</td>
<td>hours</td>
</tr>
<tr>
<td>OLLIE (English)</td>
<td>context analysis of parsed text</td>
<td>news, Wikipedia, biology textbooks (300)</td>
<td>0.66–0.85</td>
<td>N/A</td>
<td>N/A, probably hours</td>
</tr>
</tbody>
</table>
ERROR ANALYSIS

Performed:
• For Spanish language system ExtrHech:
 over FactSpaCIC (68 sent., grammatically correct) and Raw Web (159 sent.) datasets
• For English language system ReVerb:
 over the English translation of FactSpaCIC (68 sent., gram. correct)
CAUSES OF ERRORS FOR BOTH SYSTEMS 1/3

- Incorrect coord. conj. (ExtrHech 40%, ReVerb 15%)
- N-ary relation (ExtrHech 35%, ReVerb 20%)
- Incorrect relative clause (ExtrHech 20%, ReVerb 10%)
- Underspec. NP (ExtrHech 15%, ReVerb 10%)
- Incorrect POS-tagging (ExtrHech 10%, ReVerb 5%)
CAUSES OF ERRORS FOR BOTH SYSTEMS 2/3

<table>
<thead>
<tr>
<th>Cause</th>
<th>ExtrHech ReVerb</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incorrect coordinative conjunction resolution</td>
<td>43% 14%</td>
<td>The hypothalamus is responsible for certain body functions such as temperature control and receives the signal of sleep, hunger and thirst</td>
</tr>
<tr>
<td></td>
<td></td>
<td><certain body functions; receives the signal of; sleep, hunger and thirst></td>
</tr>
<tr>
<td>N-ary relation</td>
<td>24% 41%</td>
<td>...crevices and folds that give it the appearance of a peeled walnut</td>
</tr>
<tr>
<td></td>
<td></td>
<td><crevices and folds; give; it></td>
</tr>
</tbody>
</table>
CAUSES OF ERRORS FOR BOTH SYSTEMS 3/3

<table>
<thead>
<tr>
<th>Cause</th>
<th>ExtrHech</th>
<th>ReVerb</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incorrect relative clause resolution</td>
<td>19%</td>
<td>9%</td>
<td>El lugar en el que florecieron las culturas</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><El lugar; florecieron; las culturas></td>
</tr>
<tr>
<td>Under-specified noun phrase</td>
<td>10%</td>
<td>9%</td>
<td>The data from the consulted sources must be registered in index cards.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><Arg1=the consulted sources></td>
</tr>
<tr>
<td>Incorrect POS-tagging</td>
<td>10%</td>
<td>5%</td>
<td>Archaeology uses new techniques to ... study the material remains and tracks and signs that man made in the past</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><the material; signs^V; that^PN man></td>
</tr>
</tbody>
</table>
CAUSES OF ERRORS FOR \textit{SPANISH} SYSTEM 1/2

<table>
<thead>
<tr>
<th>Error Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free word order</td>
<td>15%</td>
</tr>
<tr>
<td>Non-contiguous relation</td>
<td>5%</td>
</tr>
<tr>
<td>Over-specified relation phrase</td>
<td>5%</td>
</tr>
</tbody>
</table>
Causes of Errors for Spanish System 2/2

<table>
<thead>
<tr>
<th>Cause</th>
<th>Extr Hech</th>
<th>ReVerb</th>
<th>Example</th>
<th>Intuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free word order 14%</td>
<td></td>
<td></td>
<td>De la médula espinal nacen los nervios periféricos.</td>
<td>Sp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><la médula espinal; nacen; los nervios periféricos></td>
<td></td>
</tr>
<tr>
<td>Non-contiguous relation 5%</td>
<td></td>
<td></td>
<td>bajo cuyo nombre pueden entrar los sextantes</td>
<td>Sp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><nombre; pueden entrar; los sextantes></td>
<td></td>
</tr>
<tr>
<td>Over-specified relation phrase 5%</td>
<td></td>
<td></td>
<td>La Botánica ha logrado analizar las características de la vegetación</td>
<td>sys</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><Rel = ha logrado analizar las características de></td>
<td></td>
</tr>
</tbody>
</table>
CAUSES OF ERRORS FOR ENGLISH SYSTEM 1/2

- Infinitive
- Underspecified relation phrase
- Over-specified noun phrase
- No extraction

ReVerb
<table>
<thead>
<tr>
<th>Cause</th>
<th>Extr Hech</th>
<th>ReVerb</th>
<th>Example</th>
<th>Intuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infinitive</td>
<td>–</td>
<td>9%</td>
<td>such as to interpret what the eyes see, think, and control many of the body's movements</td>
<td>Eng</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><the eyes; control many of; the body's movements></td>
<td></td>
</tr>
<tr>
<td>Under-specified relation phrase</td>
<td>–</td>
<td>5%</td>
<td>a peaceful nation of navigators who was in contact with Egypt</td>
<td>sys</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><a peaceful nation of navigators; was in; contact></td>
<td></td>
</tr>
<tr>
<td>Over-specified noun phrase</td>
<td>–</td>
<td>5%</td>
<td>The mammoths migrated from Africa 3.5 million years ago</td>
<td>sys/Eng</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><Arg2 = Africa 3.5 million years></td>
<td></td>
</tr>
<tr>
<td>No extraction</td>
<td>–</td>
<td>23%</td>
<td>—</td>
<td>sys</td>
</tr>
</tbody>
</table>
OUTLINE

Introduction
Open IE for Spanish
Experiments & Results
Error Analysis

Conclusions & Future Work
CONCLUSIONS

• Open IE based on POS-tagged input & syntactic constraints adapted to Spanish
• First cross-lingual comparative study of Open IE
• Performance for Spanish is comparable to English
 • for system based on the same approach
• Detailed analysis of errors:
 • POS-tagging accuracy of 95+% is sufficient for this task
 • Inverse word order is not the biggest problem
• Good news for Russian (and other European languages): the approach should work as well
FUTURE WORK

• Run the system over a large corpus
• Most frequent assertions will be considered “facts”
• Cluster relation phrases and arguments
• Map relations to some ontology

THANK YOU! QUESTIONS?
DIFFERENCES IN IMPLEMENTATION

- Different POS-tag set:
 EAGLES vs Penn Tree

- Different verb phrase treatment:
 - Reflexive verbs in Spanish: *Juan se lava la cara.*
 - Based on regular expressions
 - Differences in implementation of coordinative conjunction resolution,

Purely engineering details
REGEX EXAMPLES

Verb phrase:

$$VREL \rightarrow (V \ W^*P) | (V)$$

W can be a noun, an adjective, an adverb, a pronoun, or an article

$W = r'(?:\s+\w+\^\w+\^N......|(?::s+\w+\^\w+\^A......)|(?:\s+\w+\^\w+\^R.)|(?:\s+\w+\^\w+\^P.......)|(?:s+\w+\^\w+\^D.....)|(?:s+\w+\^\w+\^VMN....(?:s+\w+\^\w+\^PP...000)?))'$
3. POS analysis and syntactic constraints

ReVerb (Fader et al., 2011)

- Requires language-specific information
e.g. Typical POS sequence in a relation
- **Was implemented for English only**
 “simple canonical ways in which verbs express relationships in English” [Etzioni et al., 2011]

What are peculiarities of application of this method to another language?
APPROACHES TO OPEN IE 1/3

Learning based systems:
TextRunner (Banko, 2007), \textit{WOE}^{pos} \& \textit{WOE}^{parse} (Wu & Weld, 2010)
- Automatically labeled sentences (using heuristics or distant-supervision)
- Learn relation phrase extractor
- Argument-first:
 - Detect arguments (Arg1, Arg2) and then identificates a relation

Shortcomings:
- Noisy training corpus
- Doesn’t work well for long sentences
- Detects incoherent relations:
 (Faust; made; a deal) instead of (Fauts; made a deal with; the devil)
APPROACHES TO OPEN IE 2/3

Syntactic-analysis based systems:
OLLIE(Mausam, 2012), *FES*(Aguilar, 2012)
- Deeper syntactic and context analysis
- Detects relations that are not expressed via a verb

Shortcomings:
- High computational capacity
- Slow
POS analysis and syntactic constraints based systems:

ReVerb (Fader et al., 2011)
- Does not need labeled corpus
- POS-tagging and rules
- “Relation phrase”- first
- Fast in implementation and execution

Shortcomings:
- Detects only verb-based relations
- Works on a sentence-level
Does not resolve inverse word order

Object/Indirect Object – Verb – Subject

“De la médula espinal nacen los nervios periféricos”
(“Out of the spinal cord come peripheral nerves”)

76 utilizando conexión es de definición estándar.